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Previous works on WSD using LMs

SOTA is achieved by fine-tuning LMs on SemCor (Vial et al.,
GWC 2019).

Zero-Shot methods are evaluated on lemmas unseen
during training, but rely on WSD data to learn the task itself
(Lacerra et al., AAAI 2020).

Present unsupervised and knowledge-based methods do
not rely on LMs.


https://aclanthology.org/2019.gwc-1.14/
https://aclanthology.org/2019.gwc-1.14/
https://doi.org/10.1609/aaai.v34i05.6324
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What about removing supervised data from LMs?



Previous works on WSD using LMs

What about removing supervised data from LMs?

WiC
Accuracy

Fine-tuned SOTA 76.1
Fine-tuned BERT-Large 69.6
GPT-3 Few-Shot 49 .4

(Brown et al., 2020) Language Models are Few-Shot Learners
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Previous works on WSD using LMs

What about removing supervised data from LMs?

WiC

Accuracy
Fine-tuned SOTA 76.1
Fine-tuned BERT-Large 69.6
GPT-3 Few-Shot 49.4

Random baseline 50.0

(Brown et al., 2020) Language Models are Few-Shot Learners
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Recent Advances in DeepLearning for NLP

2013 Word Embeddings

2018 Transformers & Pretrained Language Models
2020 Zero- and Few-Shot prompting

2021 Instruction fine-tuning

(Min et al.,2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey


https://arxiv.org/pdf/2111.01243.pdf

Recent Advances in DeepLearning for NLP

2020 Zero- and Few-Shot prompting

(Min et al.,2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
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Prompting is the practice of adding
natural language text, often short
phrases, to the input or output to

encourage pre-trained models to perform
specific tasks.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey


https://arxiv.org/pdf/2111.01243.pdf

Prompting strategies

[ EXAMPLE BASED ]

Translate English to French:

sea otter => loutre de mer
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => ...

TEMPLATE BASED

Best pizza ever! It was ...............

............ News: OpenAl presents a new

model!

It's snowing. ..............., it's cold.

Yes

No

[ PROXY TASK BASED ]

premise: | am feeling grouchy.
hypotheses:

It expresses love.

It expresses anger.

It expresses

C: China has purchased two nuclear
submarines from Russia last month.

Q: Who bought something?
A: China

Q: What is bought?

A: Two nuclear submarines.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
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Prompting strategies

_ TEMPLATE BASED [ PROXY TASK BASED ]

Best pizza ever! It was ................

Translate English to French: premise: | am feeling grouchy.
hypotheses:
bad It expresses love.
sea otter => loutre de mer It expresses anger.
ceeeene. NEews: OpenAl presents a new It expresses
peppermint => menthe poivrée modell

plush girafe => girafe peluche C: China has purchased two nuclear
World submarines from Russia last month.

: Who bought thing?
cheese => ... Q © bought something

It's snowing. ..............., it's cold. A: China
Q: What is bought?
Yes No A: Two nuclear submarines.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey 10
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Prompting strategies

[ EXAMPLE BASED ] [ TEMPLATE BASED ] [ PROXY TASK BASED ]

i ! . :
Translate English to French: Best pizza ever! It was ................. premise: | am feeling grouchy.

hypotheses:
bad It expresses
sea otter => loutre de mer It expresses anger.
............ News: OpenAl presents a new It expresses
peppermint => menthe poivrée model!

plush girafe => girafe peluche C: China has purchased two nuclear
World Sports submarines from Russia last month.

. N ’)
ChEESE =5 ..o, Q: Who bought something’

It's snowing. ............... , it's cold. A: China
Q: What is bought?
Yes Maybe No A: Two nuclear submarines.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey 11


https://arxiv.org/pdf/2111.01243.pdf

Prompting strategies

EXAMPLE BASED TEMPLATE BASED

Yes

[ PROXY TASK BASED ]

premise: | am feeling grouchy.
hypotheses:

It expresses love.

It expresses anger.

It expresses

C: China has purchased two nuclear

submarines from Russia last month.

Q: Who bought something?
A: China

Q: What is bought?

A: Two nuclear submarines.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
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Prompting strategies

ExAMPLE BASED TEMPLATE BASED [ PROXY TASK BASED ]
(Emotion classification as Textual Entailment)
ItWas e premise: | am feeling grouchy.
hypotheses:

great It expresses love.
It expresses anger.

It expresses

(Argument extraction as Question Answering)

C: China has purchased two nuclear
World submarines from Russia last month.

Q: Who bought something?
.......................................... e A: China
Q: What is bought?

Yes A: Two nuclear submarines.

(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
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Textual Entailment as a proxy

PREMISE

Two men on bicycles competing in a race.

(Bowman et al, 2015) A large annotated corpus for learning natural language inference.
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Textual Entailment as a proxy

PREMISE

Two men on bicycles competing in a race.

[ ENTAILMENT HYPOTHESIS ]

People are riding bikes. Entailment: the hipothesis is entailed by the premise.

(Bowman et al, 2015) A large annotated corpus for learning natural language inference.
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Textual Entailment as a proxy

PREMISE

Two men on bicycles competing in a race.

[ ENTAILMENT HYPOTHESIS ]

People are riding bikes. Entailment: the hipothesis is entailed by the premise.

NEUTRAL HYPOTHESIS

Men are riding bicycles on the street. - the hipothesis can not be entailed by the premise.

(Bowman et al, 2015) A large annotated corpus for learning natural language inference.

16


https://doi.org/10.18653/v1/D15-1075

Textual Entailment as a proxy

PREMISE

Two men on bicycles competing in a race.

[ ENTAILMENT HYPOTHESIS ]

People are riding bikes. Entailment: the hipothesis is entailed by the premise.

NEUTRAL HYPOTHESIS

Men are riding bicycles on the street. - the hipothesis can not be entailed by the premise.

[ CONTRADICTION HYPOTHESIS ]

Few people are catching fish. Contradiction: the hipothesis contradicts the premise.

(Bowman et al, 2015) A large annotated corpus for learning natural language inference.
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Domain Labelling with Textual Entailment

hospital: a health facility where patients receive threatment.

BioLoGgy BUSINESS CULTURE EcoNomy LEGAL MEDICINE PoLiTics

(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
(Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models:

18
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Domain Labelling with Textual Entailment

PREMISE

hospital: a health facility where patients receive threatment.

BioLoGgy BUSINESS CULTURE EcoNomy LEGAL MEDICINE PoLiTics

[ HYPOTHESIS TEMPLATE ]

The domain of the sentence is about {label}.

(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
(Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models:
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Domain Labelling with Textual Entailment

PREMISE

hospital: a health facility where patients receive threatment.

BioLoGgy BUSINESS CULTURE EcoNomy LEGAL MEDICINE PoLiTics

( HYPOTHESIS TEMPLATE ) ‘

The domain of the sentence is about {label}.

(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
(Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models:
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The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

22



The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n

6788565-n: directions prescribed beforehand; the action of prescribing authoritative rules or directions.
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The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n 3999280-n

3999280-n: a drug that is available only with written instructions from a doctor or dentist to a pharmacy.
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The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n 3999280-n 6366002-n

6366002-n: written instructions for an optician on the lenses for a given person.
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The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n 3999280-n 6366002-n 6365808-n

6365808-n: written instructions from a physician or dentist to a druggist concerning the form and dosage
of a drug to be issued to a given patient.
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The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n 3999280-n 6366002-n 6365808-n
LAW_AND_CRIME HEALTH_AND_MEDICINE

(Lacerra et al, 2020) CSI: A Coarse Sense Inventory for 85% Word Sense Disambiguation

27


https://doi.org/10.1609/aaai.v34i05.6324

The task of Word Sense Disambiguation

The medicine can only be obtained with a prescription.

6788565-n 3999280-n 6366002-n 6365808-n

LAW_AND_CRIME [ HEALTH_AND_MEDICINE ]

(Lacerra et al, 2020) CSI: A Coarse Sense Inventory for 85% Word Sense Disambiguation
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Domain Inventories

[ BABELDOMAINS ]

Unified domain information
for Wikipedia, WordNet and
BabelNet.

Inherits from Wikipedia
domains.

34 coarse domain labels.
Semi-automatically
annotated.

COARSE SENSE INVENTORY

Created to reduce the
granularity of WordNet
synsets.

High agreement among
annotators.

45 domain labels.
Manually annotated.

[ WORDNET DOMAINS ]

Hierarchical domain
definition.

Domain information for
WordNet synsets.

160 fine-grained domain
labels.

Due to the high granularity
and hierarchical nature we
kept only 60 labels.
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Domain Inventories

Unified domain information
for Wikipedia, WordNet and
BabelNet.
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domains.

34 coarse domain labels.
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annotated.
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Domain Inventories

[ BABELDOMAINS ]

Unified domain information
for Wikipedia, WordNet and
BabelNet.

Inherits from Wikipedia
domains.

34 coarse domain labels.
Semi-automatically
annotated.

COARSE SENSE INVENTORY

Created to reduce the
granularity of WordNet
synsets.

High agreement among
annotators.

45 domain labels.
Manually annotated.

[ WORDNET DOMAINS ]

Hierarchical domain
definition.

Domain information for
WordNet synsets.

160 fine-grained domain
labels.

Due to the high granularity
and hierarchical nature we
kept only 60 labels.
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Word Sense Disambiguation with Textual Entailment

The medicine can only be obtained with a prescription.

prescription @ Targetword [ Ambiguous words
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Word Sense Disambiguation with Textual Entailment

6788565-n
3999280-n

6366002-n

6365808-n ] The medicine can only be obtained with a prescription.

f

prescription B Correct answer @ Targetword [ Ambiguous words



Word Sense Disambiguation with Textual Entailment

Label simplification using Domain Inventories:

6788565-n —— LAW_AND_CRIME

3999280-n HEALTH_AND_MEDICINE ]

6366002-n

6365808-n The medicine can only be obtained with a prescription.

f

prescription B Correct answer @ Targetword [ Ambiguous words



Word Sense Disambiguation with Textual Entailment

Label simplification using Domain Inventories: Hypotheses:
6788565-n — LAW_AND_CRIME — Law and crime is the domain of prescription.
3999280-n HEALTH_AND_MEDICINE ]—»[ Health and medicine is the domain of prescription. ]
6366002-n Premise (context):
6365808-n The medicine can only be obtained with a prescription.
prescription

B Correctanswer M Label candidates E Targetword [ Ambiguous words
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Word Sense Disambiguation with Textual Entailment

Label simplification using Domain Inventories: Hypotheses: Inference:
6788565-n — LAW_AND_CRIME — Law and crime is the domain of prescription.
3999280-n HEALTH_AND_MEDICINE ]—»[ Health and medicine is the domain of prescription.
6366002-n Premise (context):
6365808-n The medicine can only be obtained with a prescription.
prescription B Correctanswer M Label candidates E Targetword [ Ambiguous words NLI-NSP probabilities
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Experimental setup

2 different models:
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Experimental setup

2 different models:
BERT: a pretrained Masked Language Model along with
the Next Sentence Prediction objective.
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Experimental setup

2 different models:

RoBERTa: a pretrained Masked Language Model (similar
to BERT) but for larger number of steps.
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Experimental setup

2 different fine-tuning tasks:
NSP: Next Sentence Prediction is the task of predicting
whether a sentence follows another or not.
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Experimental setup

2 different fine-tuning tasks:

Textual Entailment: the task of predicting the
entailment relation between premises and hypotheses,
also known as NLI.
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Experimental setup

Different pre-training data regimes for Textual Entailment:
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Experimental setup

Different pre-training data regimes for Textual Entailment:
Using just MNLI dataset.
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Experimental setup

Different pre-training data regimes for Textual Entailment:

Using several Textual Entailment datasets: SNLI, MNLI,
Fever-NLI and aNLI.
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Experimental setup

2 different models:
BERT and RoBERTa

2 different training objectives:
Next Sentence Prediction (NSP) and Textual Entailment
(NLI)

Different pre-training data regimes for Textual Entailment:
NLI: just MNLI
NLI*: MNLI, SNLI, Fever-NLI and ANLI
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

cell: (biology) the basic structural and functional unit of all organisms;
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{gloss} | The domain of the sentence is about {label}

cell: (biology) the basic structural and functional unit of all organisms;
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

cell: {sietegyy the basic structural and functional unit of all organisms;
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

100-
—— Random Guessing

80" [ w/o hints
5, B w/ hints
=
o 40
<L

20-

o,

NSP NLI NLI*
BabelDomains
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

100 100-
—— Random Guessing

80 80- [ w/o hints
> > B w/ hints
@ 60 9 60
G —
= | _ -
S 40— g 40
< <

0 iy I I — i — 0 t . :
NSP NLI NLI* NSP NLI NL*
BabelDomains CSIDomains
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

100 100 100-
—— Random Guessing
80 80- 80 [ w/o hints
> > > I w/ hints
s 60 s 60 s 60
G ; . S
= = =3
O 40 O 40 g 40
<C < <C
20 20- 20
0- \ ; g- = ‘ ‘ 0- ; - '
NSP NLI NLI* NSP NLI NLI* NSP NLI NLI*
BabelDomains CSIDomains WNDomains
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

100 100 100
—— Random Guessing

[ w/o hints
I w/ hints

o
o
0
£
o0
o

o
e
o
=
o)
=

Accuracy

N B

o o o
Accuracy

N H

o (@) o
Accuracy

N BN

© o o

NSP NLI NLI* "~ NSP NLI NLI* ~ NSP NLI  NLI*
BabelDomains CSIDomains WNDomains

34 labels 45 labels 60 labels
Granularity
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Are language models able to discriminate domains in sense
glosses?

PROMPT

{gloss} | The domain of the sentence is about {label}

100- 100 100
—— Random Guessing

80" 80 I w/o hints
> I w/ hints
§ 60-
=
o 40 -
<

.

0 ‘ \ 0~ - T g i
NSP NLI NLI* NSP NLI NLI* NSP NLI NLI*

BabelDomains CSIDomains WNDomains
l 34 labels 45 labels 60 labels

Granularity 55



Do Language Models know about Word Senses?

SENT PROMPT

{context} | The domain of the sentence is about {label}.

WORD PROMPT

{context} | {label} is the domain of {word}.
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Do Language Models know about Word Senses?

SENT PROMPT

{context} | The domain of the sentence is about {label}.

WORD PROMPT

{context} | {label} is the domain of {word}.

== Supervised === Random Guessing [ sent prompt [l word prompt
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F1-Score
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Do Language Models know about Word Senses?

SENT PROMPT WORD PROMPT

{context} | The domain of the sentence is about {label}. {context} | {label} is the domain of {word}.

== Supervised === Random Guessing [ sent prompt [l word prompt

NL| NLI* NLI NLI* NLI NLI* NLI NLI* NLI NLI*
SensEvaIZ SensEvaI3 SemEvaI07 SemEvaI13 SemEvaIlS
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Do Language Models perform differently depending on the

word category?

SENT PROMPT

{context} | The domain of the sentence is about {label}.

[ WORD PROMPT]

{context} | {label} is the domain of {word}.

Model | Noun Adj Verb Adv | All
Random | 40.7 484 23.7 59.1 | 388
Sentence prompt
NSP | 60.3 849 504 86.6|62.6
NLI [ 643 862 548 86.4 | 66.1
NLI* | 65.0 859 550 853 66.4
Word prompt
NSP | 594 848 502 864 619
NLI | 66.2 868 57.0 87.3|67.8
NLI* | 653 855 557 855 |66.8

Table 3: F1-Scores per word category



Do Language Models perform differently depending on the

word category?

Model | Noun Adj Verb Adv | All
SENT PROMPT
Random | 40.7 484 237 59.1 | 388
{context} | The domain of the sentence is about {label}. Sentence prompt
NSP | 60.3 849 504 86.6|62.6
( WorD PROMPT | NLI | 643 86.2 54.8 86.4 | 66.1
NLI* | 65.0 859 550 853|664
{context} | {label} is the domain of {word}. O S——
NSP | 594 84.8 50.2 864|619
NLI | 66.2 868 57.0 87.3| 67.8
NLI* | 653 855 557 85.5] 66.8

Table 3: F1-Scores per word category
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Do Language Models perform differently depending on the

word category?

SENT PROMPT

{context} | The domain of the sentence is about {label}.

[WORDPROMPT] NLI | 64.3 862 54.8

{context} | {label} is the domain of {word}.

Model | Noun Adj Verb Adv | All
Random | 40.7 484 237 59.1 | 388
Sentence prompt
NSP | 603 849 504 86.6 | 62.6

86.4 | 66.1

NLI* | 650 859 55.0 853 |66.4
Word prompt

NSP | 594 848 502 864|619

NLI | 66.2 86.8 57.0 87.3 | 67.8

NLI* | 653 855 557 855 |66.8

Table 3: F1-Scores per word category



Do Language Models perform differently depending on the

word category?

SENT PROMPT

{context} | The domain of the sentence is about {label}. Sentence prompt

[WORDPROMPT] NLI | 643 86.2 54.8

{context} | {label} is the domain of {word}.

Model | Noun Adj Verb Adv | All
Random | 40.7 484 237 59.1 | 388
NSP | 603 849 504 86.6 | 62.6
86.4 | 66.1

NLI* | 650 859 550 853|664

Word prompt

NSP | 59.4 848 502 864 |61.9
NLI | 66.2 86.8 57.0 87.3 | 67.8
NLI* | 653 855 557 85.5|66.8

Table 3: F1-Scores per word category



WSD

To what extent does the performance on Domain Labelling
affects WSD?

1.0- ® sent prompt °
® word prompt

0.8 - Dom Lab. WSDsent WSDword
Dom Lab. | 1.00 0.32 0.41
0.6 - WSDsent 0.32 1.00 0.81
WSDyorg | 0.41 0.81 1.00
0.4-
! : o : Table 4: Spearman’s correlation of F1-Scores between
tasks using shared labels. The scores correspond to the
s NLI model.
0.0- @
010 0;2 014 0:6 018 1;0

Domain Labelling
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Conclusions

We present an approach for Zero-Shot WSD using LMs.
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Conclusions

We showed that LMs have some notion of senses even
without training them for that.
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Conclusions

We show that errors from Domain Labelling are not
directly propagated to WSD.
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Conclusions

For the future, would be interesting to analyze more
recent (and bigger) LMs.
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Conclusions

- We present an approach for Zero-Shot WSD using LMs.

- We showed that LMs have some notion of senses even
without training them for that.

- We show that errors from Domain Labelling are not
directly propagated to WSD.
For the future, would be interesting to analyze more
recent (and bigger) LMs.
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