What do Language Models know about word senses?

Zero-Shot WSD with Language Models and Domain Inventories

Oscar Sainz, Oier Lopez de Lacalle, Eneko Agirre and German Rigau

- SOTA is achieved by fine-tuning LMs on SemCor (Vial et al., GWC 2019).
- Zero-Shot methods are evaluated on lemmas unseen during training, but rely on WSD data to learn the task itself (Lacerra et al., AAAI 2020).
- Present unsupervised and knowledge-based methods do not rely on LMs.

- What about removing supervised data from LMs?

- What about removing supervised data from LMs?

	WiC Accuracy
Fine-tuned SOTA	76.1
Fine-tuned BERT-Large	69.6
GPT-3 Few-Shot	49.4

- What about removing supervised data from LMs?

	WiC Accuracy
Fine-tuned SOTA Fine-tuned BERT-Large GPT-3 Few-Shot	76.1 69.6 49.4
Random baseline	50.0

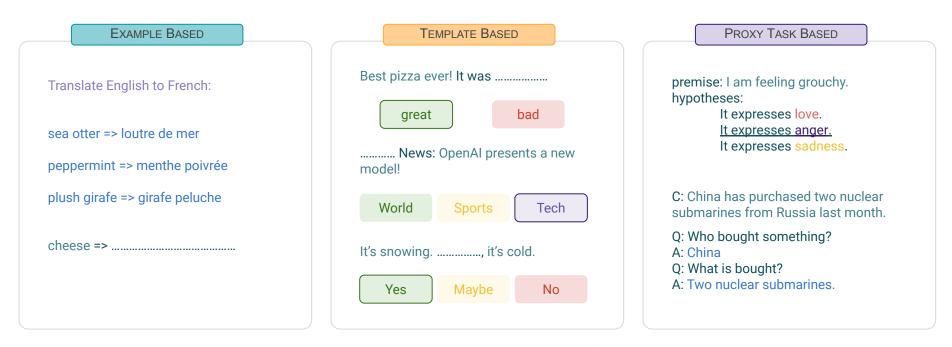
Recent Advances in DeepLearning for NLP

- 2013 Word Embeddings
- 2018 Transformers & Pretrained Language Models
- 2020 Zero- and Few-Shot prompting
- 2021 Instruction fine-tuning

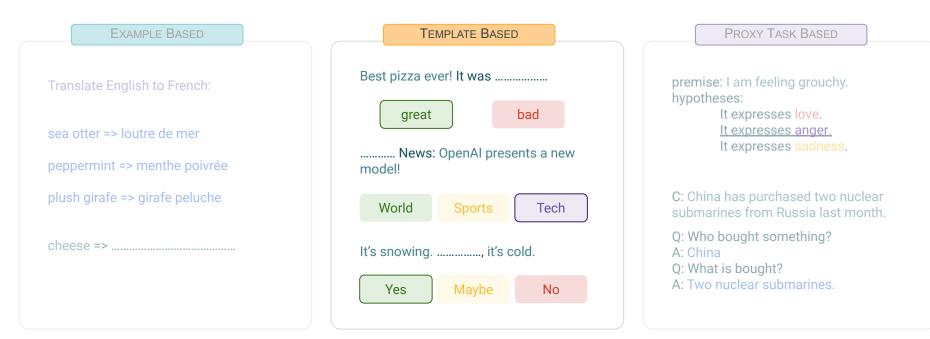
Recent Advances in DeepLearning for NLP

- 2013 Word Embeddings
- 2018 Transformers & Pretrained Language Models
- 2020 Zero- and Few-Shot prompting
- 2021 Instruction fine-tuning

Prompting is the practice of adding natural language text, often short phrases, to the input or output to encourage pre-trained models to perform specific tasks.



) 9



(Min et al., 2021) Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey

• **1**1

I EI	MPLATE BAS	ED	
Best pizza ev	er! It was		
great		bad	
News: model!	OpenAl pre	sents a n	ew
World		Тес	h
lt's snowing.	, it's	cold.	
Yes	Maybe	No)

- -

PROXY TASK BASED (Emotion classification as Textual Entailment) premise: I am feeling grouchy. hypotheses: It expresses love. It expresses anger. It expresses sadness. (Argument extraction as Question Answering) C: China has purchased two nuclear submarines from Russia last month. Q: Who bought something? A: China Q: What is bought? A: Two nuclear submarines.

Premise

Two men on bicycles competing in a race.

PREMISE

Two men on bicycles competing in a race.

ENTAILMENT HYPOTHESIS

People are riding bikes.

Entailment: the hipothesis is entailed by the premise.

PREMISE

Two men on bicycles competing in a race.

ENTAILMENT HYPOTHESIS

People are riding bikes.

Entailment: the hipothesis is entailed by the premise.

NEUTRAL HYPOTHESIS

Men are riding bicycles on the street.

Neutral: the hipothesis can not be entailed by the premise.

PREMISE

Two men on bicycles competing in a race.

ENTAILMENT HYPOTHESIS

People are riding bikes.

Entailment: the hipothesis is entailed by the premise.

NEUTRAL HYPOTHESIS

Men are riding bicycles on the street.

Neutral: the hipothesis can not be entailed by the premise.

CONTRADICTION HYPOTHESIS

Few people are catching fish.

Contradiction: the hipothesis contradicts the premise.

hospital: a health facility where patients receive threatment.

(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach (Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models.

BIOLOGY	BUSINESS	CULTURE	ECONOMY	LEGAL	MEDICINE	POLITICS
---------	----------	---------	---------	-------	----------	----------

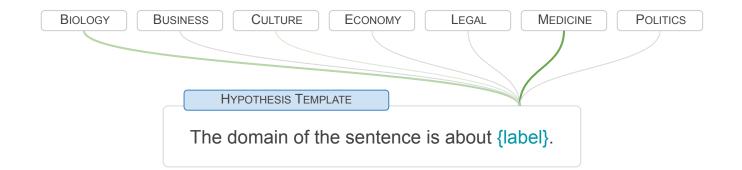
(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach (Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models.

BIOLOGY	BUSINESS	CULTURE	ECONOMY	LEGAL	MEDICINE	POLITICS

HYPOTHESIS TEMPLATE

The domain of the sentence is about {label}.

(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach (Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models.



(Yin et al, 2019) Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach (Sainz and Rigau, 2021) Ask2Transformers: Zero-Shot domain labelling with Pretrained Language Models.

The medicine can only be obtained with a prescription.

The medicine can only be obtained with a prescription.

6788565-n

6788565-n: directions prescribed beforehand; the action of prescribing authoritative rules or directions.

The medicine can only be obtained with a prescription.

6788565-n

3999280-n

3999280-n: a drug that is available only with written instructions from a doctor or dentist to a pharmacy.

The medicine can only be obtained with a prescription.

6366002-n

25

6366002-n: written instructions for an optician on the lenses for a given person.

The medicine can only be obtained with a prescription.

6365808-n: written instructions from a physician or dentist to a druggist concerning the form and dosage of a drug to be issued to a given patient.

The medicine can only be obtained with a prescription.

(Lacerra et al, 2020) CSI: A Coarse Sense Inventory for 85% Word Sense Disambiguation

The medicine can only be obtained with a prescription.



(Lacerra et al, 2020) CSI: A Coarse Sense Inventory for 85% Word Sense Disambiguation

BABELDOMAINS

- Unified domain information for Wikipedia, WordNet and BabelNet.
- Inherits from Wikipedia domains.
- 34 **coarse** domain labels.
- Semi-automatically annotated.

COARSE SENSE INVENTORY

- Created to reduce the granularity of WordNet synsets.
- High agreement among annotators.
- 45 domain labels.
- Manually annotated.

- Hierarchical domain definition.
- Domain information for WordNet synsets.
- 160 **fine-grained** domain labels.
- Due to the high granularity and hierarchical nature we kept only 60 labels.

BABELDOMAINS

- Unified domain information for Wikipedia, WordNet and BabelNet.
- Inherits from Wikipedia domains.
- 34 **coarse** domain labels.
- Semi-automatically annotated.

COARSE SENSE INVENTORY

- Created to reduce the granularity of WordNet synsets.
- High agreement among annotators.
- 45 domain labels.
- Manually annotated.

- Hierarchical domain definition.
- Domain information for WordNet synsets.
- 160 **fine-grained** domain labels.
- Due to the high granularity and hierarchical nature we kept only 60 labels.

BABELDOMAINS

- Unified domain information for Wikipedia, WordNet and BabelNet.
- Inherits from Wikipedia domains.
- 34 **coarse** domain labels.
- Semi-automatically annotated.

COARSE SENSE INVENTORY

- Created to reduce the granularity of WordNet synsets.
- High agreement among annotators.
- 45 domain labels.
- Manually annotated.

- Hierarchical domain definition.
- Domain information for WordNet synsets.
- 160 **fine-grained** domain labels.
- Due to the high granularity and hierarchical nature we kept only 60 labels.

BABELDOMAINS

- Unified domain information for Wikipedia, WordNet and BabelNet.
- Inherits from Wikipedia domains.
- 34 **coarse** domain labels.
- Semi-automatically annotated.

COARSE SENSE INVENTORY

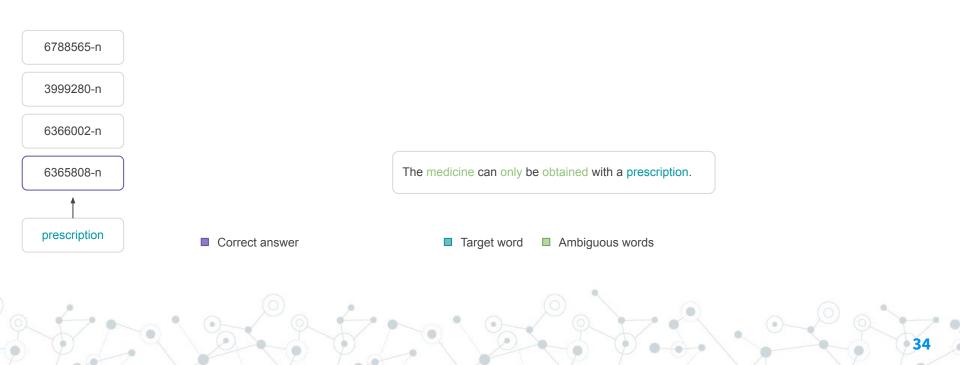
- Created to reduce the granularity of WordNet synsets.
- High agreement among annotators.
- 45 domain labels.
- Manually annotated.

- Hierarchical domain definition.
- Domain information for WordNet synsets.
- 160 **fine-grained** domain labels.
- Due to the high granularity and hierarchical nature we kept only 60 labels.

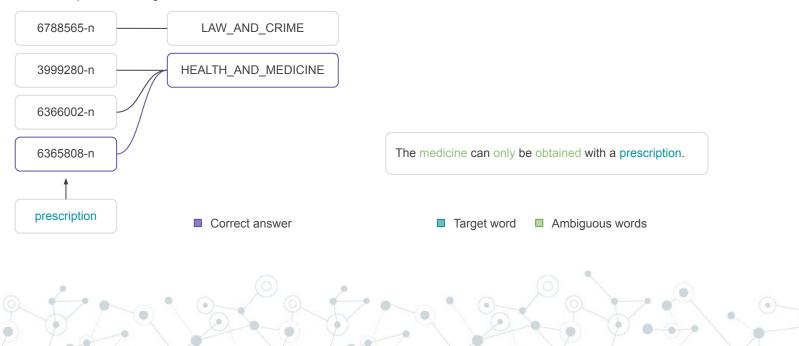
The medicine can only be obtained with a prescription.

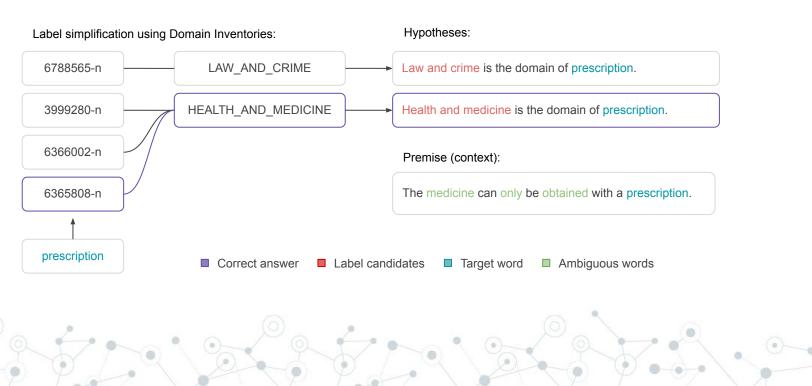
prescription

■ Target word ■ Ambiguous words

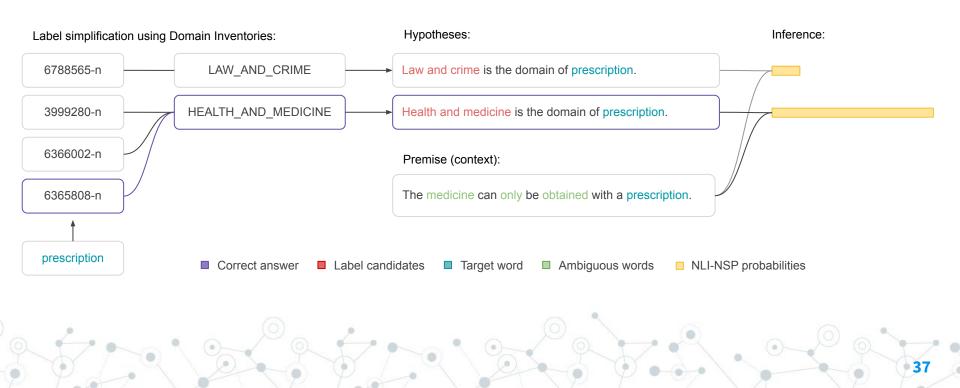


Label simplification using Domain Inventories:





Word Sense Disambiguation with Textual Entailment



- 2 different models:

- 2 different models:
 - BERT: a pretrained Masked Language Model along with the Next Sentence Prediction objective.

- 2 different models:

- BERT: a pretrained Masked Language Model along with the Next Sentence Prediction objective.
- RoBERTa: a pretrained Masked Language Model (similar to BERT) but for larger number of steps.

- 2 different models:BERT and RoBERTa
 - 2 different fine-tuning tasks:
 - NSP: Next Sentence Prediction is the task of predicting whether a sentence follows another or not.

- 2 different models:
 - BERT and RoBERTa
- 2 different fine-tuning tasks:
 - NSP: Next Sentence Prediction is the task of predicting whether a sentence follows another or not.
 - Textual Entailment: the task of predicting the entailment relation between premises and hypotheses, also known as NLI.

- 2 different models:
 - BERT and RoBERTa
- 2 different training objectives:
 - Next Sentence Prediction (NSP) and Textual Entailment (NLI)
- Different pre-training data regimes for Textual Entailment:

- 2 different models:
 - BERT and RoBERTa
- 2 different training objectives:
 - Next Sentence Prediction (NSP) and Textual Entailment (NLI)
- Different pre-training data regimes for Textual Entailment:
 - Using just MNLI dataset.

- 2 different models:
 - BERT and RoBERTa
- 2 different training objectives:
 - Next Sentence Prediction (NSP) and Textual Entailment (NLI)
- Different pre-training data regimes for Textual Entailment:
 - Using just MNLI dataset.
 - Using several Textual Entailment datasets: SNLI, MNLI, Fever-NLI and aNLI.

- 2 different models:
 - BERT and RoBERTa
- 2 different training objectives:
 - Next Sentence Prediction (NSP) and Textual Entailment (NLI)
- Different pre-training data regimes for Textual Entailment:
 - NLI: just MNLI
 - NLI*: MNLI, SNLI, Fever-NLI and ANLI

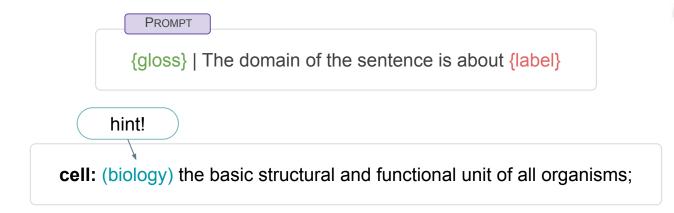
 PROMPT

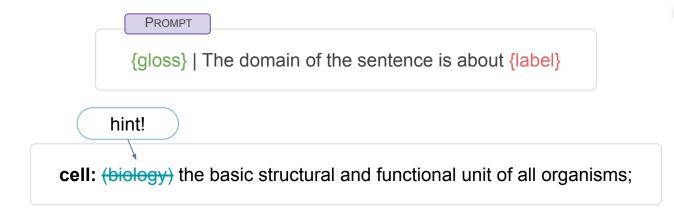
 {gloss} | The domain of the sentence is about {label}

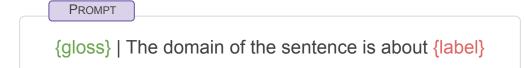
 PROMPT

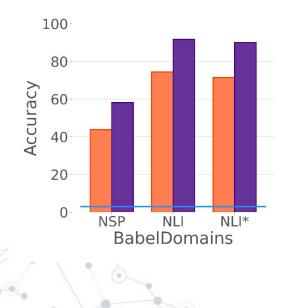
 {gloss} | The domain of the sentence is about {label}

cell: (biology) the basic structural and functional unit of all organisms;



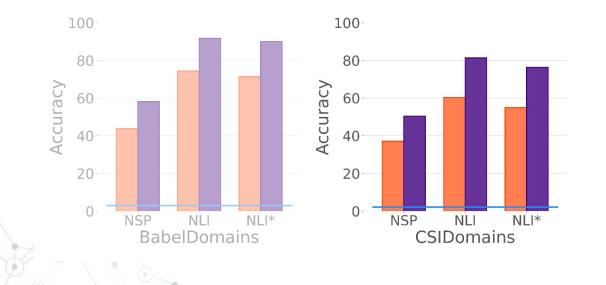


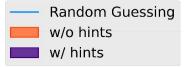




 PROMPT

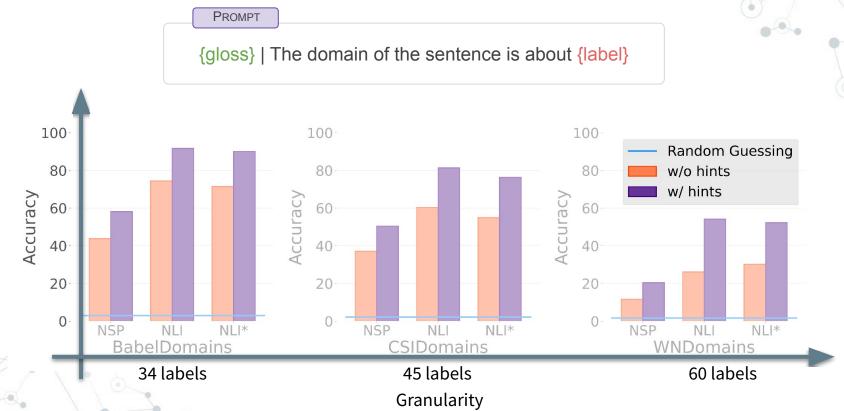
 {gloss} | The domain of the sentence is about {label}

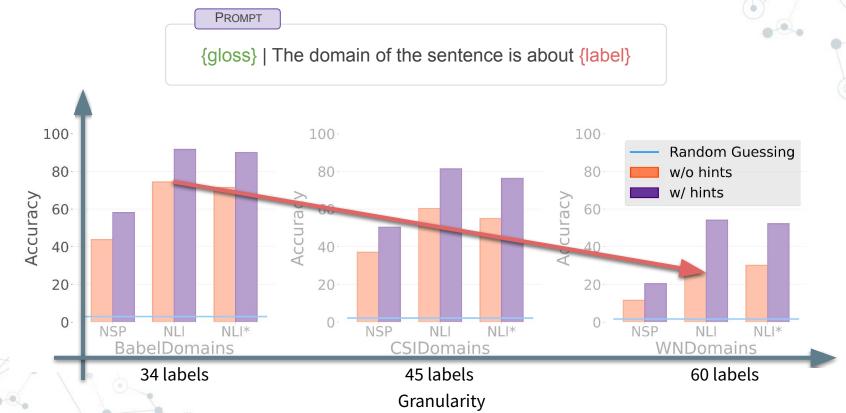




 PROMPT

 {gloss} | The domain of the sentence is about {label}





Do Language Models know about Word Senses?

SENT PROMPT

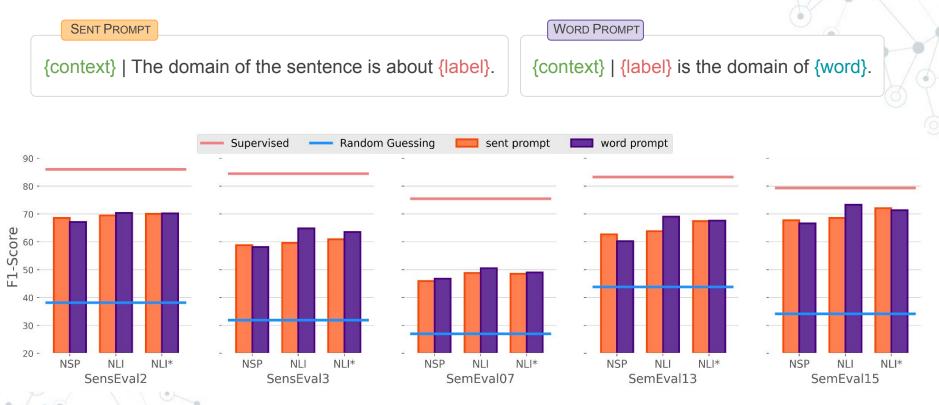
{context} | The domain of the sentence is about {label}.

WORD PROMPT

Do Language Models know about Word Senses?

SENT PROMPT	WORD PROMPT
{context} The domain of the sentence is about {label}.	<pre>{context} {label} is the domain of {word}.</pre>
Supervised Random Guessing sent p	rompt word prompt

Do Language Models know about Word Senses?



SENT	PROMPT
------	--------

{context} | The domain of the sentence is about {label}.

WORD PROMPT

Model	Noun	Adj	Verb	Adv	All
Random	40.7	48.4	23.7	59.1	38.8
Sentence prompt					
NSP	60.3	84.9	50.4	86.6	62.6
NLI	64.3	86.2	54.8	86.4	66.1
NLI*	65.0	85.9	55.0	85.3	66.4
Word prompt					
NSP	59.4	84.8	50.2	86.4	61.9
NLI	66.2	86.8	57.0	87.3	67.8
NLI*	65.3	85.5	55.7	85.5	66.8

Table 3: F1-Scores per word category

SENT PRO	MPT
----------	-----

{context} | The domain of the sentence is about {label}.

WORD PROMPT

Model	Noun	Adj	Verb	Adv	All
Random	40.7	48.4	23.7	59.1	38.8
	Sen	tence p	rompt		
NSP	60.3	84.9	50.4	86.6	62.6
NLI	64.3	86.2	54.8	86.4	66.1
NLI*	65.0	85.9	55.0	85.3	66.4
	W	ord pro	ompt		
NSP	59.4	84.8	50.2	86.4	61.9
NLI	66.2	86.8	57.0	87.3	67.8
NLI*	65.3	85.5	55.7	85.5	66.8

Table 3: F1-Scores per word category

SENT	PROMPT
------	--------

{context} | The domain of the sentence is about {label}.

WORD PROMPT

Model	Noun	Adj	Verb	Adv	All
Random	40.7	48.4	23.7	59.1	38.8
Sentence prompt					
NSP	60.3	84.9	50.4	86.6	62.6
NLI	64.3	86.2	54.8	86.4	66.1
NLI*	65.0	85.9	55.0	85.3	66.4
Word prompt					
NSP	59.4	84.8	50.2	86.4	61.9
NLI	66.2	86.8	57.0	87.3	67.8
NLI*	65.3	85.5	55.7	85.5	66.8

Table 3: F1-Scores per word category

SENT PRO

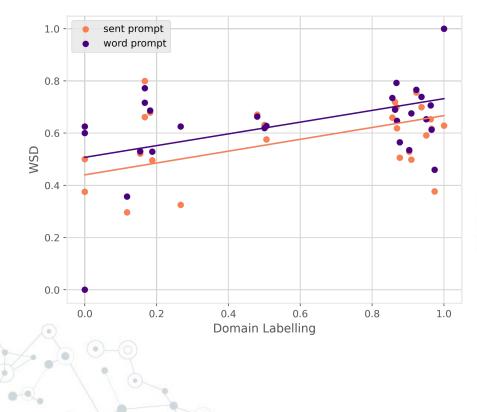
{context} | The domain of the sentence is about {label}.

WORD PROMPT

Model	Noun	Adj	Verb	Adv	All
Random	40.7	48.4	23.7	59.1	38.8
Sentence prompt					
NSP	60.3	84.9	50.4	86.6	62.6
NLI	64.3	86.2	54.8	86.4	66.1
NLI*	65.0	85.9	55.0	85.3	66.4
Word prompt					
NSP	59.4	84.8	50.2	86.4	61.9
NLI	66.2	86.8	57.0	87.3	67.8
NLI*	65.3	85.5	55.7	85.5	66.8

Table 3: F1-Scores per word category

To what extent does the performance on Domain Labelling affects WSD?



	Dom Lab.	WSD _{sent}	WSD _{word}
Dom Lab. WSD _{sent} WSD _{word}	1.00	0.32	0.41
WSD _{sent}	0.32	1.00	0.81
WSD _{word}	0.41	0.81	1.00

Table 4: Spearman's correlation of F1-Scores between tasks using shared labels. The scores correspond to the NLI model.

- We present an approach for Zero-Shot WSD using LMs.

- We present an approach for Zero-Shot WSD using LMs.
- We showed that LMs have some notion of senses even without training them for that.

- We present an approach for Zero-Shot WSD using LMs.
- We showed that LMs have some notion of senses even without training them for that.
- We show that errors from Domain Labelling are not directly propagated to WSD.

- We present an approach for Zero-Shot WSD using LMs.
- We showed that LMs have some notion of senses even without training them for that.
- We show that errors from Domain Labelling are not directly propagated to WSD.
- For the future, would be interesting to analyze more recent (and bigger) LMs.

- We present an approach for Zero-Shot WSD using LMs.
- We showed that LMs have some notion of senses even without training them for that.
- We show that errors from Domain Labelling are not directly propagated to WSD.
- For the future, would be interesting to analyze more recent (and bigger) LMs.

What do Language Models know about word senses?

Zero-Shot WSD with Language Models and Domain Inventories

Oscar Sainz, Oier Lopez de Lacalle, Eneko Agirre and German Rigau

